Algebrassa toisen asteen kaava on kaava, joka tarjoaa ratkaisun tai ratkaisut toisen asteen yhtälölle On olemassa muita tapoja ratkaista toisen asteen yhtälö sen sijaan, että käytettäisiin toisen asteen yhtälöä. kaava, kuten factoring (suora factoring, ryhmittely, AC-menetelmä), neliön täydentäminen, graafinen piirtäminen ja muut.
Onko toisen asteen yhtälö kaava?
Neliökaava auttaa meitä ratkaisemaan minkä tahansa toisen asteen yhtälön. Ensin tuodaan yhtälö muotoon ax²+bx+c=0, jossa a, b ja c ovat kertoimia. Sitten liitämme nämä kertoimet kaavaan: (-b±√(b²-4ac))/(2a).
Mikä on toisen asteen kaava ja mihin sitä käytetään?
2 Asiantuntijaohjaajien vastauksia
Asennon kaava antaa juuret (kutsutaan myös nolliksi tai x-leikkauspisteiksi) toisen asteen yhtälölleNeliöyhtälö on toisen asteen yhtälö; sen korkein termi nostetaan toiseen potenssiin. Neliöyhtälöt ovat paraabelin muotoisia.
Mitä esimerkkejä ei ole toisen asteen yhtälöstä?
Esimerkkejä EI-kvadraattisista yhtälöistä
- bx − 6=0 EI ole toisen asteen yhtälö, koska siinä ei ole x2 termiä.
- x3 − x2 − 5=0 EI OLE toisen asteen yhtälö, koska on olemassa x3termi (ei sallittu toisen asteen yhtälöissä).
Kuka loi toisen asteen kaavan?
Al-Khwarizmin työ
Vuonna 825 jKr, noin 2500 vuotta babylonialaisten taulujen luomisen jälkeen, on laatinut yleisen menetelmän, joka on samanlainen kuin nykyinen neliökaava. Arabien matemaatikko Muhammad bin Musa al-Khwarizmi kirjassa Hisab al-jabr w'al-muqabala.